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Stokes flow in a mixer with changing geometry
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Abstract. A slow-flow mixing device that mimics a natural mixing technique is described. Analytical, numerical
and experimental results are presented for the ‘translating, rotating mixer’, which illustrate its mixing effectiveness.
In large part, this effectiveness is due to the fact that its geometry changes with time, a feature rare in mathemati-
cally tractable slow-flow mixing models. The mixer consists of a large circular cylinder filled with fluid, which is
stirred by a circular cylindrical ‘rod’ that moves around in the fluid. The stirring rod may also rotate about its axis.
The velocity field is calculated explicitly for the mixer, and its mixing action is simulated numerically. Through a
complex-variable formulation of the problem, the energy input required for various mixing protocols may readily
be determined, and in turn suggestions for efficient mixing using the device are offered. To validate the analytical
and numerical results, tracer-advection experiments are performed, using a simple experimental rig and a variety
of mixing protocols, providing encouraging agreement with numerical simulation.
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1. Introduction

Fluid mixing is a problem that is widely encountered, from everyday examples such as the
stirring of milk into a mug of coffee, to large-scale processes in the chemical engineering in-
dustry. In this paper, we describe through analysis, numerics and experiment a simple mixing
device that mimics a natural technique for mixing.

Our mixing device consists of a circular cylindrical vat inside which fluid is stirred by a rod
of circular cross-section, which may be moved in an arbitrary motion across the vat of fluid.
In addition, the stirring rod may also be ‘twirled’, i.e., rotated about its own axis, and the vat
itself may be rotated about its axis. By making the slow-flow approximation (that the Reynolds
number of the flow is vanishingly small), we are able to compute the flow field exactly, and
this greatly facilitates our numerical simulations of the mixing (see [1] for a warning against
using approximate expressions for the flow field).

The slow-flow approximation is relevant for a range of engineering processes in which
delicate molecules (such as long-chain polymers or bio-molecules) are to be mixed. For
example, it is well known that the large shear rates associated with turbulent mixers cause
undesirable damage to proteins, micro-organisms, animal and plant cells: this is a major prob-
lem in bioprocess engineering (see the review by Thomas [2], for example). Despite the flow
in our mixer being laminar, we shall demonstrate that, in common with other mixers where
the velocity field is chaotic [3, 4], it is capable of excellent mixing. To validate our results, we
perform some experiments using our mixing device.

Although there have been many previous descriptions of slow-flow mixers, these have
almost exclusively concerned devices with a fixed geometry (a notable exception is the mixing
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device of Jana et al. [5]; in addition, one could argue that the blinking rotlet flow of Meleshko
and Aref [6] involves a changing geometry, because the singularities in the flow field that
drive the motion alternate between two positions). The key novel feature of our mixing device
is that the geometry of the flow domain changes with time as the stirring rod moves around.
As we demonstrate below, this feature, which is found in virtually any mixer that relies upon
moving parts, makes the mixer highly effective.

Our mixing device, which we call the TRM (translating, rotating mixer) significantly
improves upon the much studied EAM (eccentric annular mixer) [7–18], in which fluid is
also contained between two non-concentric circular cylinders with parallel axes. In the EAM,
however, stirring of the fluid is achieved only by a rotation of the outer and inner cylinders
about their respective axes (the inner cylinder in the EAM thus represents a stirring rod whose
axis is fixed, but which is free to rotate about this fixed axis). If this rotation is carried out
in a time-dependent fashion, the fluid may undergo chaotic motion with consequently good
mixing. In the TRM, the inner cylinder is also free to move laterally, so that the geometry
of the flow domain evolves with time, leading to better mixing and a better model for the
behaviour of real mixing devices.

The streamfunction for the flow satisfies the biharmonic equation. Since this equation and
the imposed boundary conditions are linear, we may assemble the velocity field for the TRM
by adding together the appropriate solutions corresponding to the various components of the
motion. Several of the necessary solutions already exist in the literature, and others have been
derived in special cases, but the general translational motion of the stirring rod has not been
given before. We now briefly summarise these special cases and individual elements of the
TRM flow.

The flow field for the EAM (i.e., for the twirling of the stirring rod, and for the rotation
of the outer wall of the vat) was first given by Jeffery [14] in bipolar coordinates; this work
was later extended [7, 11, 15]. The solution in Cartesian coordinates was first given by Wan-
nier [18], who calculated the flow field together with the forces and moments acting on the
boundaries. The translational component of the motion has been solved in two special cases
[19–21], but not for general motion of the stirring rod. (A plane elastic problem analogous
to translation of the inner cylinder has also been solved, in bipolar coordinates, by Steven-
son [22], following earlier work of Jeffery [23] – see also Milne-Thomson [24].) In the special
case in which the outer cylinder has infinite radius (i.e., it becomes a plane wall), Jeffrey and
Onishi [25] obtained the flow due to a translating and rotating inner cylinder. This work has
been of particular value in providing an asymptotic check on our analytical results. Forces and
moments on the inner cylinder were computed by Jeffrey and Onishi [25], with experimental
confirmation of the Stokes drag given by Trahan and Hussey [26].

In deriving the velocity field for flow in the TRM, we make use of the method of images
for slow flow inside a circular boundary. We summarise the method of images in complex-
variable form in Section 2, and illustrate its application to two simple singularities: a rotlet
and a (modified) stokeslet, the former example giving a more direct derivation of the rotlet
flow of Meleshko and Aref [6]. The energetics of the motion are considered in Section 3. The
rotlet and the modified stokeslet, together with their image singularities, form the basis of the
TRM velocity field, which is derived in Section 4, along with a calculation of its associated en-
ergetics. Numerical simulations and experiments with the TRM follow in Section 5, showing
its mixing effectiveness. We make our concluding remarks in Section 6.
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2. Image systems for slow flow inside a circular cylinder

For two-dimensional, slow viscous flow, the streamfunction ψ(x, y, t) that governs the veloc-
ity field (u, v) = (∂ψ/∂y,−∂ψ/∂x) satisfies the biharmonic equation [16, 27]

∇4ψ = 0. (1)

The velocity field is assumed to be quasi-static, meaning that temporal variations in the veloc-
ity field are slow enough that the time derivative term in the Navier–Stokes equations may be
ignored in deriving (1).

To calculate the velocity field for the translating, rotating mixer, we shall make use of
the method of images in a circular boundary at which both components of the fluid velocity
vanish. We therefore begin by discussing, in this section, this method of images. Readers not
interested in the derivation of the velocity field may skip directly to Section 4.5.

For flow in a domain between a pair of non-concentric circular boundaries, it seems natural
to work in bipolar coordinates. However, we prefer a complex-variable formulation, which is
essentially based on Cartesian coordinates. The first reason is that the flow field may readily
be computed in finite terms in this coordinate system; the second is a practical issue that our
numerical simulations are most conveniently carried out in Cartesian coordinates.

The full streamfunction for the TRM is composed of various singular solutions to (1),
together with their images in the outer circular boundary (none of the singularities lies in the
flow domain). In general, singular solutions to (1) are useful in generating flows past bodies of
various geometries (see, for example, Chwang and Wu [19] and the review by Hasimoto and
Sano [28]). In particular it is useful to know, given a singularity, the corresponding system of
images in a no-slip boundary. The first such treatment of images for the biharmonic equation
was given by Lorentz [29], for images in a rigid plane boundary. The images of the basic
singular solutions (stokeslet, rotlet, source, doublet) in such a boundary were later catalogued
by a variety of authors [30–34].

The corresponding method of images for a no-slip circular boundary [35, 36] seems to
have developed in a rather more ad hoc fashion. A method of images was first sketched by
Frazer [20]. Two equivalent ‘circle theorems’ [37, 38] have since been derived for flow exte-
rior to a no-slip circular boundary. In each case, the method for constructing the appropriate
images makes use of the result of Michell [39] on inversion of solutions to the biharmonic
equation in a circle. However, our interest lies rather with the interior flow, inside a circular
boundary.

We present below a method of images for flow inside a rigid circular cylinder with a
no-slip boundary. Our procedure is rather more systematic than, for example, that used by
Avudainayagam and Jothiram [35], who constructed the streamfunction due to a rotlet outside
a circle from the original rotlet singularity together with other singularities, whose magni-
tudes were determined by applying the outer boundary condition. Ranger [34] has carried
out a corresponding calculation for flow due to a rotlet inside a circle. As with the Milne-
Thomson circle theorem for inviscid flow [27], extraneous images may be introduced at the
origin through a naive calculation of the image system. These must be removed: our procedure
for doing so is Frazer’s ‘method of successive reflections’ [20], which we describe below.

We introduce the complex coordinates

z = x + iy, z̄ = x − iy (2)
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(throughout this paper, the overbar will denote complex conjugation), in terms of which the
biharmonic equation (1) becomes [22]

∂4ψ

∂2z ∂2z̄
= 0. (3)

The general solution to (3) may be written in the form [27]

ψ(z, z̄) = z̄f (z)+ zf̄ (z̄)+ g(z)+ ḡ(z̄), (4)

where f and g are arbitrary differentiable functions, with the corresponding velocity field
(u, v) being given by

u+ iv = −2i
∂ψ

∂z̄
. (5)

The major result that we use in determining the image system in a no-slip circular boundary
is the following. We suppose that a streamfunction ψ(z, z̄) of the form (4) has a given set of
singularities, none of which lie on the circle |z| = a. Then the streamfunction

�(z, z̄) = z̄f (z)+ zf̄ (z̄)+ g(z)+ ḡ(z̄)− zf̄ (a2/z)− z̄f (a2/z̄)− ḡ(a2/z)− g(a2/z̄)

+ (a2 − |z|2) {f̄ ′(a2/z)+ f ′(a2/z̄)+ z−1ḡ′(a2/z)+ z̄−1g′(a2/z̄)
}

(6)

satisfies the no-slip boundary condition

u+ iv = 0 on |z| = a, (7)

and has the same set of singularities inside |z| = a as does ψ, except possibly for additional
singularities at the origin z = 0, due to the terms in a2z−1 and a2z̄−1 in (6). Furthermore,
� = 0 on |z| = a (this rather convenient feature justifies some of the constants that we keep
when deriving streamfunctions below, that one might otherwise discard). The locations of the
singularities of � are those of the original streamfunction ψ, together with their images in the
circle |z| = a (including the image of the point at infinity). By analogy with (4), � may be
written in the form

� = z̄F (z)+ zF̄ (z̄)+G(z)+ Ḡ(z̄), (8)

where

F(z) = f (z)− zf̄ ′(a2/z)− ḡ′(a2/z), (9)

G(z) = g(z)− zf̄ (a2/z)+ a2f̄ ′(a2/z)− ḡ(a2/z)+ a2z−1ḡ′(a2/z), (10)

these functions being just the ‘conjugate functions’ of Frazer [20]1.
To remove any (unphysical) singularities introduced at the origin in the derivation of �

from ψ, we apply a modified version of Frazer’s method of successive reflections [20], as
follows. We first investigate the singularities of � as z → 0, then generate their images in the
circle |z| = a, finally subtracting off an appropriate multiple of the result from �. At least for
singularities of the form z−n or zn log z, this process will be successful in removing spurious
singularities from � at the origin, as illustrated below in Section 2.1 and 2.2.

1The corresponding formulas for images in the plane y = 0 are F(z) = f (z) − zf̄ ′(z) − ḡ′(z) and G(z) =
g(z)−zf̄ (z)+z2f̄ ′(z)−ḡ(z)+zḡ′(z) [20]. These expressions are based on the plane image method of Lorentz [29].
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We now demonstrate how the method of images is applied to two singularities: the rotlet
and the modified stokeslet. These will form the basic building blocks for our construction of
the TRM streamfunction, in Section 4 below.

2.1. THE IMAGE SYSTEM FOR THE ROTLET

In this subsection, we apply the method of images to a rotlet placed inside the boundary
|z| = a, at the point z = s ∈ R. The resulting flow has been derived elsewhere by different
methods, by Ranger [34] and by Meleshko and Aref [6]. Ranger’s approach is based on a
limiting case of the solution of Jeffery [14] for the EAM; it allows the outer boundary to
rotate, although we defer consideration of this feature to later. Meleshko and Aref [6] use a
Fourier series to calculate the images of the rotlet; the following method is rather simpler and
more direct than theirs.

We consider the streamfunction

ψ = C log |z− s| = 1
2C{log(z− s)+ log(z̄− s)}, (11)

where C ∈ R, for a rotlet of strength C. The corresponding functions f and g in (4) are then

f (z) = 0, g(z) = 1
2C log(z − s), (12)

and the corresponding image system obtained from (9) and (10) is

F(z) = Cz

2s(z − σ)
, G(z) = C

2

{
log

(
− z− s

s(z − σ)

)
− σ

z− σ
+ log z

}
, (13)

where sσ = a2. The streamfunction � generated by substituting (13) in (8) then satisfies the
no-slip boundary condition on |z| = a, but has an unphysical logarithmic singularity at the
origin which is not present in the original streamfunction ψ given by (11). In physical terms,
this singularity is removed as follows. We note first that simply subtracting the offending
logarithm (i.e. rotlet) from G(z) would induce a tangential slip velocity on the cylinder wall
|z| = a, which would violate the no-slip condition there. This condition can, however, be
reinstated by adding to the system of singularities a rigid body rotation about the origin.

To see mathematically how this procedure is accomplished, we consider the image of the
offending singularity in |z| = a, given by taking a streamfunction of the form (4), with

f (z) = 0, g(z) = P log z. (14)

According to (9) and (10), we find the corresponding image system to be given by a stream-
function of the form (8), with

F(z) = −P̄ za−2, G(z) = P̄ (1 − log a2)+ (P + P̄ ) log z. (15)

It follows from (13) and (15) that, in order to eliminate the singularity in � at the origin, we
must add to the functions in (12) the functions in (14), with P = − 1

4C. If we do so and use
(8), we arrive at the final streamfunction

� = C

2

{
log

σ|z− s|2
s|z − σ|2 + (|z|2 − a2)(|z|2 − σ2)

a2|z − σ|2
}
, (16)
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Figure 1. Streamlines corresponding to a rotlet and its image system in the circle |z| = a, from (16). From left to
right the rotlet locations are z/a = 4/8, 5/8, 6/8 (indicated by the arrows).

which is precisely the rotlet flow derived by Ranger [34] and by Meleshko and Aref [6], its
only singularity inside the circle |z| = a being at z = s. Typical streamlines are shown in Fig-
ure 1. In this and all subsequent streamline plots, the streamlines do not represent equispaced
values of the streamfunction, but are instead chosen to illustrate the flow pattern.

2.2. THE IMAGE SYSTEM FOR THE MODIFIED STOKESLET

We now turn to the image system associated with a stokeslet placed inside the circle |z| = a,
at the point z = s ∈ R. In fact, it is more convenient to consider a modified stokeslet, which
contains only the singular part of the streamfunction, in the form

ψ = 1
2 {A(z+ z̄)− iB(z − z̄)} log |z − s|

= 1
4 {(A− iB)z + (A+ iB)z̄} {log(z − s)+ log(z̄− s)} , (17)

where A and B are real constants, and A + iB is the strength of the stokeslet. (Note that
an unmodified stokeslet [19] would have the logarithm that appears in the first line of (17)
replaced by log |z − s| − 1.) Thus in (4),

f (z) = 1
4 (A+ iB) log(z − s), g(z) = 1

4 (A− iB)z log(z − s). (18)

Substitution in (9) and (10) then yields

F(z) = 1
4(A+ iB)

{
log

(
− z − s

s(z − σ)

)
+ σ

z − σ
+ log z

}
+ 1

4(A− iB)
z2

s(z − σ)
, (19)

G(z) = 1
4(A+ iB)

{
− a2

z− σ
+ a2

z

}

+ 1
4 (A− iB)

{
z log

(
− z− s

s(z − σ)

)
− σz

z− σ
+ z log z

}
, (20)

with consequent singular behaviour at the origin of the form

F(z) ∼ 1
4 (A+ iB) log z, G(z) ∼ 1

4(A+ iB)a2z−1 + 1
4(A− iB)z log z. (21)

To remove these singular parts of the solution, we apply the method of successive reflec-
tions [20] as above in Section 2.1, and consider the image of a singular streamfunction of the
form (4) with

f (z) = P log z, g(z) = Qz log z+ Rz−1, (22)
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Figure 2. Streamlines corresponding to a modified stokeslet with real strength and its image system in the circle
|z| = a, from (29). From left to right the stokeslet locations are z/a = 1/7, 3/7, 5/7 (indicated by the arrows).

where P , Q and R are complex constants. The image of this system of singularities is given
by (9) and (10) to be

F(z) = −Q̄(1 + log a2)+ (R̄a−2 − P̄ )a−2z2 + (P + Q̄) log z, (23)

G(z) = {P̄ (1 − log a2)− 2R̄a−2}z + (P̄ +Q)z log z+ (Q̄a2 + R)z−1. (24)

It follows that to remove the singular behaviour indicated in (21) we must add to the functions
f and g in (18) the functions in (22) with P , Q and R satisfying

1
4(A+ iB)+ P + Q̄ = 0, (25)

1
4(A− iB)+ P̄ +Q = 0, (26)

1
4(A+ iB)a2 + Q̄a2 + R = 0. (27)

The solution to this system of equations is clearly not unique since (25) is the complex con-
jugate of (26), and so we have only two independent equations for three unknowns. However,
the streamfunction that results from any combination of P , Q and R satisfying (25)–(27) is
unique, and a convenient choice is

P = 0, Q = − 1
4(A− iB), R = 0. (28)

The non-uniqueness in the choice of P , Q and R reflects the freedom to decompose a given
streamfunction in infinitely many ways into a corresponding f (z) and g(z) (for example, we
may replace f and g by f + 1 and g − z, respectively, without affecting the resulting stream-
function.) Finally, the streamfunction consisting of the modified stokeslet and its images, free
of unphysical singularity at the origin is, from (8),

� = 1
4{A(z + z̄)− iB(z − z̄)} log

σ|z− s|2
s|z − σ|2

+ A(|z|2 − a2)

4s

{
z + s

z− σ
+ z̄ + s

z̄− σ

}
+ iB(z− z̄)(σ − s)(|z|2 − a2)

4s|z − σ|2 . (29)

Typical streamlines for modified-stokeslet image systems with real and imaginary strengths,
respectively, are shown in Figures 2 and 3. The form of the streamlines near each kind of



82 M.D. Finn and S.M. Cox

Figure 3. Streamlines corresponding to a modified stokeslet with imaginary strength and its image system in the
circle |z| = a, from (29). From left to right the stokeslet locations are z/a = 1/7, 3/7, 5/7 (indicated by the
arrows).

modified stokeslet is readily confirmed by a local analysis of the streamfunction (cf. Figure 1
of [33]).

3. Energetics

The complex-variable formulation of the streamfunction allows us readily to calculate the
forces and moments acting on the boundary cylinders. The method is based on that of Steven-
son [22] (see also Milne-Thomson [27] and Pozrikidis [40]), and is included here for com-
pleteness.

3.1. BACKGROUND

Let C denote a boundary whose outward normal points into the fluid, and let the force on this
boundary due to the fluid motion be represented by the complex quantity F , where the real
and imaginary parts of F give, respectively, the x- and y-components of the force. Then if the
streamfunction for the motion is as in (8), the force on the boundary, per unit length in z, is
given by [22, 27]

F = 4µ
[−F(z)+ zF̄ ′(z̄)+ Ḡ′(z̄)

]
C
, (30)

where [H(z) ]C is the change in the value of H(z) upon navigating C once in an anti-
clockwise sense. Similarly, the moment M about the origin of the boundary forces acting
on C is [22, 27], per unit length in z,

M = 4µI
[
zz̄F̄ ′(z̄)+ z̄Ḡ′(z̄)− Ḡ(z̄)

]
C
. (31)

To calculate the corresponding force and moment acting on the outer boundary, we reverse
the signs of the expressions (30) and (31).

When calculating the energy requirements of the mixing device, we shall be more inter-
ested in the force and moment exerted on the fluid by the boundaries; these are just the forces
and moments described above, with a change of sign.

In the remainder of this section, we calculate the forces and moments generated by various
singularities and their associated image systems in a circular boundary. These results are then
assembled for the TRM in Section 4.
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3.2. THE ENERGETICS OF THE ROTLET

The functions F(z) and G(z) that generate through (8) the streamfunction for the rotlet in the
presence of a circular boundary are found by adding together the functions in (13) and (15)
with P = − 1

4C. The force and moment exerted by the cylinder |z| = a on the fluid inside is
then found using the results above in Section 3.1, taking the contour C as the perimeter of the
cylinder. Only terms in F(z) and G(z) that are multivalued or have multivalued derivatives
may contribute to the force and moment. In a redefinition of notation for the purpose of this
calculation, the only relevant components of these functions are

F(z) = 0, G(z) = C

2
log

(
− z − s

s(z − σ)

)
. (32)

The resulting forces and moments are then

F = 4µ

[
C

2

(
1

z̄ − s
− 1

z̄− σ

)]
C

= 0, (33)

M = 4µI

[
Cz̄

2

(
1

z̄ − s
− 1

z̄− σ

)
− C

2
log

(
− z̄ − s

s(z̄ − σ)

)]
C

= − 2µC I
[
log(z̄− s)− log(z̄− σ)

]
C
. (34)

To evaluate M, we must now proceed with caution. If |s| < a, the original rotlet singularity
at z = s lies inside the contour C and [log(z̄ − s)]C = −2iπ. The image singularity at z = σ

lies outside the boundary and so the term log(z̄− σ) is unchanged by a tour of C. By contrast,
when the rotlet is placed outside the cylinder, with |s| > a, the situation is reversed and the
image singularity makes an equal and opposite contribution to M. Hence

F = 0, (35)

M =
{

4πµC if |s| < a

−4πµC if |s| > a.
(36)

3.3. THE ENERGETICS OF THE MODIFIED STOKESLET

The functions F(z) and G(z) corresponding to a modified stokeslet in the presence of a
cylindrical boundary are found by adding together the respective expressions in (19), (20),
(23) and (24), with P , Q and R given by (28). For the purpose of the energetics calculation
we need to consider only the multivalued components of F and G:

F(z) = 1
4(A+ iB) log

(
− z− s

s(z − σ)

)
, (37)

G(z) = 1
4(A− iB)z log

(
− z − s

s(z − σ)

)
. (38)

When these expressions are applied as in Section 3.1, taking C as the perimeter of the cylinder
once again, we find that the force and moment exerted by the cylinder on the fluid are

F =
{

4πµ(B − iA) if |s| < a

−4πµ(B − iA) if |s| > a,
(39)

M = 0. (40)
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Figure 4. The geometry of the translating, rotating mixer. Fluid fills the annular region between the inner and
outer cylinders (with radii ain and aout, respectively). These cylinders may each rotate about their own axes, with
angular velocities �in and �out. In addition the inner cylinder may translate, with velocity (U, V ). The origin of
the Cartesian coordinate system coincides with the axis of the outer cylinder, and the axis of the inner cylinder is
at (ε, 0), where ε is the eccentricity. At each instant the coordinate system is chosen so that the axis of the inner
cylinder lies on the x-axis.

3.4. THE ENERGETICS OF GENERAL IMAGE SYSTEMS

For a streamfunction ψ of the form (4) whose image system is given by� of the form (8), there
are two useful relationships between the functions f , g, F and G that allow us to compute
the forces and moments due to � using the relatively simple functions f and g instead of
the more complicated functions F and G. These relationships, readily confirmed from (9) and
(10), are[−F(z)+ zF̄ ′(z̄)+ Ḡ′(z̄)

]
C

= 2
[−f (z)+ zf̄ ′(z̄)+ ḡ′(z̄)

]
C
, (41)[

zz̄F̄ ′(z̄)+ z̄Ḡ′(z̄)− Ḡ(z̄)
]
C

= 2
[
zz̄f̄ ′(z̄)+ z̄ḡ′(z̄)− ḡ(z̄)

]
C
. (42)

In applications, it may be that one form results in an easier calculation than the other, although
for the two examples above there is little difference in the computational effort required in
using the different expressions.

4. The translating, rotating mixer

We are now in a position to describe the translating, rotating mixer, which is illustrated in
Figure 4. The inner and outer boundaries of the fluid domain are the circles |z − ε| = ain

and |z| = aout, respectively, where the (real) eccentricity ε is not necessarily small. The outer
cylinder may rotate about its axis, with angular velocity �out, and so the boundary condition
to be satisfied there is

u+ iv = i�outz at |z| = aout. (43)

At the inner cylinder, in addition to a rotation of the boundary with angular velocity �in, a
translation velocity (U, V ) is permitted, so the corresponding boundary condition is

u+ iv = U + iV + i�in(z − ε) at |z − ε| = ain. (44)
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Recall that we consider Stokes flow, at vanishingly small Reynolds number, so that the stream-
function ψ satisfies the biharmonic equation (1). Since this governing equation and the bound-
ary conditions are linear in ψ, we may construct the streamfunction for the rather complicated
general motion of the device by superposing solutions corresponding to individual compo-
nents of the motion. These component solutions are given in the following subsections, and
are assembled in Section 4.5 to give the complete streamfunction.

We note that our geometry is set up with the axis of the inner cylinder lying on the x-
axis. Of course, if the y-component of its velocity is nonzero, then it will immediately move
off this axis. However, rather than present below the streamfunction for the TRM with the
inner cylinder in an arbitrary position, we instead choose to present the streamfunction for the
‘canonical’ geometry in Figure 4, noting that any other location of the inner cylinder may be
obtained by a rotation of the coordinate axes.

4.1. SOME GEOMETRICAL CONSIDERATIONS

In the following subsections, we shall construct the streamfunction for the translating, rotating
mixer by applying the method of images to various singularities. As a precursor to this calcu-
lation, we note in this subsection some identities that will enable us to match the locations of
the singularities with the geometrical parameters of the mixer. (The requisite strengths of the
singularities will be the subject of the next few subsections.)

A rotlet or modified stokeslet at z = s ∈ R (with image point z = σ, where sσ = a2
out)

generates images that result in a streamfunction containing the logarithm

L ≡ log
σ|z− s|2
s|z − σ|2 .

To satisfy boundary conditions of the form contemplated above in (43) and (44), we need
to ensure that this logarithm is constant on the inner and outer boundaries. By construction,
on the outer boundary, where |z| = aout, this logarithm automatically vanishes. On the inner
boundary, where |z − ε| = ain, it can be made constant by choosing s so that

a2
in = (s − ε)(σ − ε), (45)

in which case

L = log
σ(s − ε)

s(σ − ε)
. (46)

Given the geometrical parameters ain, aout and ε, the corresponding value of σ is then

a2
out − a2

in + ε2 + {(aout + ain + ε)(aout + ain − ε)(aout − ain + ε)(aout − ain − ε)}1/2

2ε
,

(47)

with s being given by the expression above, but taking minus the square root.
In addition, once the relationship (45) is adopted, it follows after a little algebra that

−|z|2 − a2
out

|z− σ|2 = ε

σ − ε
, −|z|2 − a2

out

|z − s|2 = ε

s − ε
. (48)
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Figure 5. Streamline patterns corresponding to x-translation of the inner cylinder, with a fixed outer cylinder.
In each picture the axis of the inner cylinder is instantaneously at the point ( 1

2aout, 0). From left to right
ain/aout = 1/8, 2/8, 3/8.

Finally, we note that, according to (45),

(z− ε)(z̄ − ε) = (s − ε)(σ − ε) (49)

on the inner cylinder. This equation is useful for eliminating z̄ in favour of z on |z − ε| = ain.

4.2. x-TRANSLATION OF THE INNER CYLINDER

In this subsection, we derive the streamfunction that corresponds to motion of the inner cylin-
der along the real axis, with neither cylinder rotating, so that V = 0 and �in = �out = 0 in
(43) and (44).

We consider a streamfunction in the form of a modified stokeslet of strength iB at z = s

and a modified stokeslet of strength iβ at the image point z = σ, where sσ = a2
out. Then,

according to (29),

ψ = − 1
4 i(B − β)(z − z̄) log

σ|z − s|2
s|z − σ|2

+ 1
4 i(z − z̄)(σ − s)(|z|2 − a2

out)

{
B

s|z − σ|2 − β

σ|z− s|2
}
. (50)

By the method of images described in Section 2, we are assured that the homogeneous bound-
ary conditions at |z| = aout are satisfied, and it remains to impose the condition u+ iv = U at
|z− ε| = ain. To do so, we first calculate the velocity field using (5), which gives

u+ iv = 1
2 (B − β) log

σ|z− s|2
s|z − σ|2 − 1

2 (σ − s)

{
B(|z|2 − a2

out)

s|z − σ|2 − β(|z|2 − a2
out)

σ|z− s|2
}

+ 1
2(σ − s)(z − z̄)

{
− B(|z|2 − a2

out)

s(z − σ)(z̄− σ)2
+ β(|z|2 − a2

out)

σ(z − s)(z̄ − s)2

+ z
B

s|z− σ|2 − z
β

σ|z− s|2 + B − β

(z̄− s)(z̄ − σ)

}
. (51)

The expression for the velocity on the inner boundary may be considerably simplified using
the identities in (48) and (49) to give

u+ iv = 1
2 (B − β)L+ 1

2 (σ − s)

{
Bε

s(σ − ε)
− βε

σ(s − ε)

}

− (σ − s)(z − z̄)

2(z̄− s)(z̄ − σ)

{
ε(σ − s)(ε(Bσ + βs)− (B + β)sσ)

sσ(s − ε)(σ − ε)

}
, (52)
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Figure 6. Streamline patterns for the y-translation of the inner cylinder, with a fixed outer cylinder. In each picture
the axis of the inner cylinder is instantaneously at the point ( 1

2aout, 0). From left to right ain/aout = 1/8, 2/8,
3/8.

where L is given by (46). We are now in a position to apply the boundary condition u+iv = U

to (52), which requires

ε(Bσ + βs)− (B + β)sσ = 0, (53)

1
2(B − β)L+ 1

2(σ − s)

{
Bε

s(σ − ε)
− βε

σ(s − ε)

}
= U. (54)

From this pair of equations, we finally obtain the stokeslet strengths

B = 2U(σ − ε)s

2ε(σ − s)+ (a2
in + a2

out − ε2)L
, (55)

β = −2U(s − ε)σ

2ε(σ − s)+ (a2
in + a2

out − ε2)L
. (56)

These expressions agree with those presented by Secomb and El-Kareh [21], after conversion
to bipolar coordinates. Typical streamlines are illustrated in Figure 5.

4.3. y-TRANSLATION AND ROTATION OF THE INNER CYLINDER

In this subsection, we derive the streamfunction for motion of the inner cylinder comprising
translation in the y-direction and rotation about its axis. We consider a modified stokeslet of
strength A and rotlet of strength C at z = s. We also consider a modified stokeslet of strength α

and a rotlet of strength γ at the image point z = σ. The streamfunction corresponding to these
singularities, together with their images in the outer boundary, is, according to Sections 2.1
and 2.2,

ψ = {
1
4 (A− α)(z+ z̄)+ 1

2 (C − γ)
}

log
σ|z − s|2
s|z − σ|2

+ (|z|2 − a2
out)

{
A

4s

(
z + s

z − σ
+ z̄ + s

z̄− σ

)
+ α

4σ

(
z+ σ

z− s
+ z̄ + σ

z̄− s

)

+ C(|z|2 − σ2)

2a2
out|z − σ|2 + γ(|z|2 − s2)

2a2
out|z − s|2

}
. (57)
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Figure 7. Streamline patterns corresponding to rotation of the inner cylinder, with a fixed outer cylinder. In each
picture the axis of the inner cylinder is at the point ( 1

2aout, 0). From left to right ain/aout = 1/8, 2/8, 3/8.

This streamfunction gives rise, through (5), to the velocity field

u+ iv = 1
2 i(A− α)

{
(z+ z̄)(σ − s)

(z̄− s)(z̄ − σ)
− log

σ|z− s|2
s|z − σ|2

}

+ 1
2 iA

{
(|z|2 − a2

out)(σ + s)

(z̄− σ)2s
− z

s

(
z+ s

z − σ
+ z̄ + s

z̄ − σ

)}

+ 1
2 iα

{
(|z|2 − a2

out)(σ + s)

(z̄ − s)2σ
− z

σ

(
z + σ

z− s
+ z̄ + σ

z̄− s

)}

− iC

{
z2

a2
out(z− σ)

− zσ − a2
out

s(z̄ − σ)2
− 1

z̄ − σ
+ 1

z̄− s

}

− iγ

{
z2

a2
out(z− s)

− zs − a2
out

σ(z̄ − s)2
− 1

z̄− s
+ 1

z̄ − σ

}
. (58)

By construction, the boundary condition (43) is automatically satisfied, with �out = 0.
To satisfy the boundary condition (44) with U = 0, we equate the right-hand side of (58) to
iV + i�in(z− ε) on the inner cylinder. It turns out after much algebra (relegated to a computer
package) that the resulting equation simplifies to

K0 +K1z +K2z
2 +K3z

3 ≡ 0, (59)

where the four constants Ki are complicated expressions, but which depend only upon the
geometry of the mixer, and upon V and �in. The condition (59) is satisfied by setting each of
the Ki to zero, resulting in four linear equations for A, α, C and γ. However, these equations
are not linearly independent, and we are free to impose one further condition: a symmetry in
the coefficients A, α, C and γ is obtained by specifying C = −γ, which gives

A = sε
a2

in(2ε − Lσ)�in − 2V (σ2 + a2
in)

(a2
out − a2

in + ε2){2(σ − s)ε + (a2
in + a2

out)L} , (60)

α = −σε
a2

in(2ε + Ls)�in − 2V (s2 + a2
in)

(a2
out − a2

in + ε2){2(σ − s)ε + (a2
in + a2

out)L} , (61)

C = −a2
out

a2
in(2(σ − s)ε + (a2

in + a2
out − ε2)L)�in − 2V ε2(σ − s)

2ε(σ − s){2(σ − s)ε + (a2
in + a2

out)L} , (62)

γ = a2
out

a2
in(2(σ − s)ε + (a2

in + a2
out − ε2)L)�in − 2V ε2(σ − s)

2ε(σ − s){2(σ − s)ε + (a2
in + a2

out)L} . (63)
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Figure 8. Streamline patterns corresponding to rotation of the outer cylinder, with a fixed inner cylinder. In each
picture the axis of the inner cylinder is at the point ( 1

2aout, 0). From left to right ain/aout = 1/8, 2/8, 3/8.

Typical streamlines for y-translation and for rotation of the inner cylinder are shown in Fig-
ures 6 and 7.

4.4. ROTATION OF THE OUTER CYLINDER

By construction, the solutions (50) and (57) so far each satisfy u + iv = 0 on the outer
boundary. To see how to accommodate a rotation of the outer boundary, we consider the
influence of the streamfunction

ψ = − 1
2�out(|z|2 − a2

out). (64)

At the outer cylinder, this clearly corresponds to a rotation with angular velocity �out. At the
inner cylinder, it gives the velocity field u+ iv = i�outz, which may be separated into the two
components

u+ iv = iε�out + i�out(z− ε), (65)

and these can in turn be identified, respectively, as a y-translation of the inner cylinder with
speed ε�out and a rotation about its axis with angular velocity �out. These extraneous motions
of the inner cylinder can be removed by noting the identity

ψ(z, z̄;U,V,�in,�out) = ψ(z, z̄;U,V − ε�out,�in −�out, 0)− 1
2�out(|z|2 − a2

out),

(66)

i.e., by making the substitutions

�in �→ �in −�out, V �→ V − ε�out (67)

in the coefficients (60)–(63). Typical streamlines due to the rotation of the outer cylinder, with
a stationary inner cylinder, are shown in Figure 8.
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Figure 9. Some sample streamline patterns for the TRM, generated from (68) or (69). The parameter values for
each image are given in Table 1. We have not undertaken a systematic cataloguing of the great variety of possible
streamline patterns.

4.5. OVERALL SOLUTION

The final streamfunction, which allows for rotation of both cylinders about their axes and
translation of the inner cylinder, is

ψ = {
1
4 (A− α)(z+ z̄)− 1

4 i(B − β)(z − z̄)+ 1
2 (C − γ)

}
log

σ|z− s|2
s|z − σ|2

+ 1
2(|z|2 − a2

out)

{
A

2s

(
z + s

z − σ
+ z̄+ s

z̄ − σ

)
+ α

2σ

(
z + σ

z− s
+ z̄+ σ

z̄− s

)

+ iB(z− z̄)(σ − s)

2s|z − σ|2 − iβ(z − z̄)(σ − s)

2σ|z − s|2

+ C(|z|2 − σ2)

a2
out|z− σ|2 + γ(|z|2 − s2)

a2
out|z − s|2 −�out

}
, (68)
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Table 1. Parameter values corresponding to the images in Figure 9.

1 2 3 4 5 6 7 8 9

ain/aout 0·1 0·4 0·15 0·1 0·15 0·15 0·3 0·1 0·3
ε/aout 0·8 0·3 0·6 0·1 0·7 0·7 0·7 0·2 0·5
V/U 2 1 1 2 0 −1 0 1 1

�inaout/U −3 5 10 0 3·33 0 0 5 2

�outaout/U 1 −3 0 0 0·66 0·66 −0·2 −1 −2

where the coefficients B and β are given by (55) and (56). The coefficients A, α, C and γ are
given by (60)–(63) for �out = 0; their values for �out �= 0 are determined similarly, but with
the substitutions in (67). This streamfunction can be written in Cartesian coordinates, ready
for numerical work, as

ψ = 1
2 {(A− α)x + (B − β)y + (C − γ)} log

{
σ

s

(x − s)2 + y2

(x − σ)2 + y2

}

+ 1
2 (r

2 − a2
out)

{
A{r2 − a2

out − (σ − s)x}/s − B(σ − s)y/s + C(r2 − σ2)/a2
out

(x − σ)2 + y2

+ α{r2 − a2
out + (σ − s)x}/σ + β(σ − s)y/σ + γ(r2 − s2)/a2

out

(x − s)2 + y2
−�out

}
, (69)

where r2 = x2 + y2. The corresponding streamlines can be quite complicated – a sample of
the possibilities is shown in Figure 9. However, a full delineation in parameter space of all the
topologically distinct flows is beyond the scope of this article.

4.6. THE ENERGETICS OF THE TRM

We shall later compute the energy requirements of various stirring protocols used in numerical
simulations of the TRM. In preparation for that calculation, we consider in this subsection
the energetics of the TRM. Wannier [18] has computed the forces and moments acting on
the boundaries in the case where they each rotate about their respective axes, and the inner
cylinder does not translate; however, the details of his calculation were not presented. In the
special case in which the radius of the outer cylinder becomes infinite, the corresponding
forces and moments have been calculated by Jeffrey and Onishi [25], and we have used their
results to check ours in that limit.

We begin by noting that the TRM streamfunction is just a combination of rotlet and
stokeslet singularities, together with their images: inside the outer cylinder, at z = s, are a
modified stokeslet of strength A+ iB and a rotlet of strength C; outside the cylinder, at z = σ,
are a stokeslet of strength α + iβ and a rotlet of strength γ. By linearity, the force Fout and
moment Mout about the origin exerted by the outer cylinder on the fluid is found by adding
together the results (35), (36), (39) and (40) that apply to each individual rotlet and stokeslet.
We find that the final expressions are

Fout = 4πµ(B − β − iA+ iα), (70)

Mout = 4πµ(C − γ). (71)
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Figure 10. Power inputs required for radial translation with speed Uradial (top left), azimuthal translation with
speed Uazimuthal (top right), inner cylinder rotation (bottom left) and outer cylinder rotation (bottom right) in the
TRM, where the power P is given by (75). The distance of the inner cylinder axis from the origin is ε, and each
curve is marked with the corresponding value of ain/aout.

Since the mixing device is in overall equilibrium (or by repeating the analysis of Section 3
using the inner cylinder as the contour C), we find that the force Fin and moment M about the
origin exerted by the inner cylinder on the fluid are

Fin = 4πµ(β − B − iα + iA), (72)

M = 4πµ(γ − C). (73)

In calculating the power input to the device, it is more useful to know instead the moment
about the axis of the inner cylinder, which is thus

Min = M − εIFin = 4πµ(γ − C − εA+ εα). (74)

The power input, per unit axial length of the device, is then

P ≡ (RFin,IFin) · (U, V )+ Min�in + Mout�out

= 4πµ {(β − B)U + (A− α)V + (γ − C − εA+ εα)�in + (C − γ)�out} . (75)

It is instructive to examine how the power input to the TRM required to maintain the
various translational and rotational motions depends upon the position of the inner cylinder.
Figure 10 shows the variation with eccentricity of the power inputs required for the four dif-
ferent motions (radial and azimuthal translation of the inner cylinder, and rotation of the inner
and outer cylinders). As one would expect, the power requirements for radial and azimuthal
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Table 2. Three different cycloid stirring protocols
used in our experiments. The parameters r1, r2 and
n correspond to the cycloid path given in (76), and
λ is the length of this path.

Protocol r1/aout r2/aout n λ/aout

−4:1 0·42 0·31 −4 8·02

+4:1 0·21 0·53 +4 13·35

+6:1 0·31 0·42 +6 15·89

translation coincide as ε → 0 since the distinction between different directions of motion
is lost when the cylinders are concentric. With the scalings adopted in Figure 10, the power
requirements for rotation of the inner and outer cylinders also coincide as ε → 0. We note from
Figure 10 that the power needed to rotate the outer cylinder increases much more rapidly as
a function of eccentricity than does that for the inner cylinder. As the two cylinders approach
one other, i.e., as ε → aout −ain, all the power inputs diverge (cf. [18, 25]). When the cylinders
are close, but not touching, more power is required to move the inner cylinder perpendicular
to the wall than parallel to it [25].

5. Numerical and experimental results

Having established the velocity field for the TRM, we now describe a selection of numer-
ical stirring simulations and experiments with the device. We present below comparisons
between our numerical and experimental results; these serve in part as a validation of the
various modelling assumptions that we have made, in particular that the flow is quasi-steady
and sufficiently slow that it is governed by (1), and that the flow is well approximated as
two-dimensional. The experiments provide encouraging agreement with the numerical simu-
lations.

Our method of stirring involves translating a rod (the inner cylinder) of circular cross-
section and relatively small radius so that its axis moves along a prescribed path (x, y) =
(X(t), Y (t)) inside the fixed outer cylinder, where the parameter t is time. We have chosen
each path to be a cycloid of the form

(X, Y ) = (r1 cos(2πt/T )+ r2 cos(2πnt/T ), r1 sin(2πt/T )+ r2 sin(2πnt/T )); (76)

the parameters r1, r2 and n determine the exact shape of the cycloid. We consider integer
values for n and as a consequence the cycloid stirring period is T .

The choice of a cycloid as the stirring path was motivated by the comparative ease with
which such a path can be generated experimentally using straightforward gearing. Although
many, more complicated stirring protocols can be envisaged, for example, involving rotation
of one or both cylinders during some part of the cycle, we were unable to reproduce these more
complicated protocols with our modest experimental set-up. Furthermore, we have found in
numerical simulations that the use of more complicated stirring protocols usually requires
increased power input, but does not necessarily improve stirring quality. With a more sophis-
ticated experimental facility, it may of course be possible to implement rotation of the inner
or outer cylinders; such motions are readily accommodated in (69).
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Figure 11. The experimental TRM. On each side of the vat of fluid is an identical arrangement of arms and gears
(one set is shown here). The larger gear wheel is fixed to the bench and the smaller gear wheel rotates around it.
An S-shaped arm is fixed at one end to the smaller gear wheel; the other end, which traces out a cycloid as the
smaller gear wheel rotates, passes through a hole in the perspex sheet to guide its motion and thus the motion of
the inner cylinder.

Figure 12. The cycloids followed by the inner cylinder in our experiments. From left to right are shown the −4:1,
+4:1 and +6:1 protocols, named according to Table 2.

Our experimental apparatus consisted of a large coffee tin (aout = 7·8 cm) for an outer
cylinder and a length of copper pipe (ain = 0·75 cm) for an inner cylinder. The pipe was
bolted to a sheet of perspex which rested across the rim of the coffee tin. This perspex sheet
was then guided on both sides by a simple arrangement of arms and gears which traced out
the cycloid, and hence led the copper pipe to follow the same path (see Figure 11). Different
cycloids were obtained by changing the lengths of the arms and by using different numbers
of teeth on the gears. The guiding mechanisms were placed out of view of the top of the
outer cylinder to permit photographs to be taken of the mixer. With the gears we had at our
disposal we could reproduce the three stirring protocols in Table 2 – the total length λ =∮
(U 2 + V 2)1/2 dt of each complete cycloid is shown in this table, and the path shapes are

illustrated in Figure 12. Although the viscosity of the fluid (golden syrup) is highly variable as
a function of temperature, we estimate the Reynolds number of the flows we have generated to
be O(10−3) or smaller (where we have used as a length scale aout, as a velocity scale aout/T ,
where T ≈ 120 s is the period of the cycloid, and where we have taken the kinematic viscosity
of golden syrup to be approximately 1000 cm2 s−1 – see [41], p. 28).

The coffee tin was filled with golden syrup and we then followed the mixing of a small
blob of ‘tracer’ as the stirring action was played out. We used acrylic paint in golden syrup as
tracer, floated on the surface so that it was visible to a digital camera overhead. Of course, such
a procedure introduces the prospect of surface effects that are a potential source of discrepancy
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Figure 13. Comparison between numerical simulations (top row) and experiments (bottom row) using the −4:1
stirring protocol. The leftmost images show the initial (nominally) circular blob of radius 0.14aout centred at the
point (x, y) = (0.20, 0.30)aout. The following snapshots show the blob after one, two and three complete stirring
cycles.

Figure 14. Further comparisons between numerical and experimental results. A circular blob of radius 0.14aout
placed at the centre of the outer cylinder was stirred for three cycles. The left-hand pair of images shows the
results using the +4:1 protocol (numerical then experimental); the right-hand pair corresponds likewise to the
+6:1 protocol.

between the experiments and numerical simulations. Furthermore, with the concentration of
paint used, there remains the likelihood of significant viscosity differences (or, worse, of
different rheology) between the (supposedly passive) tracer and the bulk fluid. However, the
actual discrepancies turn out to be small, as the results that follow demonstrate.

To simulate numerically the evolution of a blob of tracer under the stirring action, we
considered the blob to be made up of a large number of fluid particles, then integrated the
positions of these particles forwards in time using the streamfunction (69). Figures 13 and
14 show the agreement between the numerical simulations and the experimental runs. The
numerical simulations generally capture very well the broad features of the corresponding
experimental runs, and also many of the finest structures of the flow. Although not all of the
fine details of the stretched blob are reproduced by the numerical simulation, the agreement is
remarkably good, given our experimental apparatus.

It is evident in both the numerics and experiments that each protocol provides a different
mixing quality, and it remains to attempt to quantify this distinction. One typical diagnostic
tool for assessing the mixing quality is the rate of stretching of the blob perimeter that is
achieved by the mixing. We found that these stretching rates were least with the −4:1 protocol
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Figure 15. Iterated mappings, computed numerically, for the stirring protocols used in our experiments. From left
to right the images correspond to the −4:1, +4:1 and +6:1 stirring protocols.

and greatest with the +6:1 protocol, although the length stretch was so great with all protocols
that we were unable properly to resolve the entire boundary after even moderate times.

The ability to generate high interface stretch rates is not the only important indicator of the
quality of a mixing device: uniformity of mixing over the entire flow domain is also important
in applications. To illustrate this, we show in Figure 15 iterated mappings for each stirring
protocol, generated by following approximately thirty fluid particles and superimposing their
locations after each period of the device (i.e., at t = mT for integers m up to several thousand).
These iterated mappings reveal periodic islands where mixing quality is poor for each of the
three stirring protocols. It is the simplest protocol (−4:1) that has the smallest area of visible
islands and which therefore appears to offer the most uniform mixing. There are two large
islands for the +6:1 protocol, which occupy almost half the stirring domain; we conclude that
the mixing is correspondingly poor (uneven).

When evaluating the different stirring protocols, account should be taken not only of the
final effect of the mixing on the blob, but also of the energy input required to achieve the
mixing. Figure 16 shows, using the results of Section 4.6, the power and energy input required
to drive each of the three stirring protocols. Our comparisons are based on requiring each
mixer to complete its cycloid stirring protocol in a time T , as in (76). (This period is significant
because in slow flow the energy required to carry out a given number of mixing cycles can
be reduced by a factor of k merely by running the mixer k times as slowly.) The cycloid
corresponding to the −4:1 protocol is by far the shortest and consequently is traversed the most
slowly; this protocol demands, in each cycle, less than half the energy of the +4:1 protocol,
and less than one-third that of the +6:1 protocol.

With the three protocols that we have investigated, we find that increasing the length of the
cycloid leads to a greater stretching of the blob interface per cycle, but at the cost of a greater
energy input and less uniform mixing. However, it would be unwise to attempt to extrapolate
from these results to a more general case as it seems unlikely that greater stretching of the blob
interface is generally associated with less uniform mixing. There is clearly much scope for
further numerical and experimental investigation: given the rich variety of streamline patterns
possible in the TRM (see Figure 9), the present results are far from being exhaustive.

6. Conclusion

The mixer that we have described mimics a natural mixing technique for a range of mixing
problems, whose every-day manifestations include stirring (newtonian) paint with a length of
dowel or stirring a mug of coffee (albeit with a spoon of circular cross-section). The mixing
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Figure 16. The left-hand plot shows the dimensionless power (PT 2/µ/a2
out) required to drive the three ex-

perimental stirring protocols when the inner cylinder is moved according to (76), with the outer cylinder
fixed (stirring protocol is indicated on each curve). The right-hand plot shows the dimensionless energy
(
∫ t

0 P (t ′)T 2/µ/a2
out dt ′/T ) expended in stirring the device through one complete cycle (stirring protocol and

total dimensionless energy expenditure are indicated on each curve).

takes place in laminar flow, which is appropriate in an industrial context for delicate long-chain
polymers and bio-molecules. The mixer has a time-dependent geometry, which is the case for
any mixer designed with moving parts, but despite this complication its velocity field can
be computed exactly in closed form, by means of the slow-flow, quasi-static approximation.
The changing geometry of the mixing device allows more effective stirring protocols than is
possible in mixers with a fixed geometry, essentially because the inner cylinder can regularly
plough through otherwise nearly ‘dead’ regions of the flow (such as arise commonly in the
eccentric annular mixer, for example). This improvement in the mixing is in accord with the
common-sense notion that to stir effectively, you move your stirring implement through the
fluid rather than just turn it at a fixed location.

We have found that our mixer is readily constructed (for example, for demonstration pur-
poses). Furthermore, the many assumptions made in deriving the exact velocity field (that
there is slow, two-dimensional, quasi-steady flow) do not preclude good agreement between
numerical simulation and experiment. It would be interesting for future studies in more so-
phisticated experimental facilities to investigate whether it is true for more general paths than
cycloids that increasing the length of the path traced out by the inner cylinder in one cycle
leads to greater stretching of the blob interface at the expense of greater energy input and less
uniform mixing.

It is clear from the sample of streamline patterns in Figure 9 that by combining the various
rotational and translation motions of the mixer boundaries, a wide range of flows is possible,
with complicated, asymmetrical streamline patterns containing elliptic and hyperbolic points.
We have not attempted a systematic classification of the possible streamline patterns, nor
of their bifurcations, although such a programme should be feasible and may suggest other
effective stirring protocols. In particular, we have not given numerical or experimental results
for a rotating inner or outer cylinder, because we have been unable to achieve these motions
with our experimental rig. However, it would be of interest to investigate whether mixing
might be improved by implementing a rotation of one or other boundary cylinder.

The TRM generates excellent mixing, and it does so in slow laminar flow, which tends
to avoid the extreme shear rates present in turbulent flow. While this feature of the device
suggests that it might be useful for the bioprocess industry, it suffers a number of shortcom-
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ings that might make it unsuitable for practical application in that area. Firstly, the mixing
is two-dimensional, so that there is no axial motion of the fluid and hence no axial mixing,
which can be important, for example in keeping cells suspended homogeneously. Also the
smooth cylindrical nature of the stirring rod would make it unsuitable in a bioprocess such as
fermentation, where a bladed impeller is useful in dispersing the fermentation gases [42, 43].
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